\(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\) [423]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 230 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 A (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a^2 d}-\frac {2 \sqrt {a+b} (A-B) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d} \]

[Out]

2*A*(a-b)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)
^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d-2*(A-B)*cot(d*x+c)*EllipticF((a+b*c
os(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)
*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {3077, 2895, 3073} \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 A (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 \sqrt {a+b} (A-B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d} \]

[In]

Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*Sqrt[a + b*Cos[c + d*x]]),x]

[Out]

(2*A*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]
])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a^2*d) -
(2*Sqrt[a + b]*(A - B)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])
], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d)

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rubi steps \begin{align*} \text {integral}& = A \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx+(-A+B) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {2 A (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a^2 d}-\frac {2 \sqrt {a+b} (A-B) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 9.68 (sec) , antiderivative size = 299, normalized size of antiderivative = 1.30 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 \left (A (a+b \cos (c+d x)) \sin (c+d x)-\frac {2 \sqrt {2} \cos ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} \left (2 A (a+b) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )-2 a (A+B) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+A \cos (c+d x) (a+b \cos (c+d x)) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{(1+\cos (c+d x))^{3/2}}\right )}{a d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*Sqrt[a + b*Cos[c + d*x]]),x]

[Out]

(2*(A*(a + b*Cos[c + d*x])*Sin[c + d*x] - (2*Sqrt[2]*(Cos[(c + d*x)/2]^2)^(3/2)*(2*A*(a + b)*Cos[(c + d*x)/2]^
2*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcS
in[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 2*a*(A + B)*Cos[(c + d*x)/2]^2*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]
*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]
 + A*Cos[c + d*x]*(a + b*Cos[c + d*x])*Tan[(c + d*x)/2]))/(1 + Cos[c + d*x])^(3/2)))/(a*d*Sqrt[Cos[c + d*x]]*S
qrt[a + b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(770\) vs. \(2(214)=428\).

Time = 15.74 (sec) , antiderivative size = 771, normalized size of antiderivative = 3.35

method result size
parts \(-\frac {2 A \left (-\sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, F\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a +\sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a +\sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) b +\left (\csc ^{3}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{3} a -\left (\csc ^{3}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{3} b +a \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+b \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right ) \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}\, \left (\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1\right )}{d \left (\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b \right ) \left (\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1\right ) {\left (-\frac {\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\right )}^{\frac {3}{2}} a}-\frac {2 B \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, F\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}}{d \sqrt {a +\cos \left (d x +c \right ) b}\, \sqrt {\cos \left (d x +c \right )}}\) \(771\)
default \(\text {Expression too large to display}\) \(979\)

[In]

int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*A/d*(-(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+
c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a+(-csc(d*x+c)^2*(1-cos(d*x+c))^
2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d
*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+
c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*
b+csc(d*x+c)^3*(1-cos(d*x+c))^3*a-csc(d*x+c)^3*(1-cos(d*x+c))^3*b+a*(csc(d*x+c)-cot(d*x+c))+b*(csc(d*x+c)-cot(
d*x+c)))*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2
+1))^(1/2)*(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+
a+b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)/(-(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^
(3/2)/a-2*B/d*(1+cos(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/(a+cos(d*x+c)*b)^(1/2)*EllipticF(cot(d*x+c)-csc
(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)/cos(d*x+c)^(1/2)

Fricas [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(b*cos(d*x + c)^3 + a*cos(d*x + c)^2
), x)

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))/(sqrt(a + b*cos(c + d*x))*cos(c + d*x)**(3/2)), x)

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^(1/2)),x)

[Out]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^(1/2)), x)